쑤쑤_CS 기록장
Chapter 8: Advanced Convolutional Neural Networks 본문
Chapter 8: Advanced Convolutional Neural Networks
(╹◡╹)_ 2020. 8. 13. 17:48SqueezeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
MobileNet and data augmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
How good is the model really?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
Converting to Core ML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Challenges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
Key points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
SqueezeNet
The Keras functional API
MobileNet and data augmentation
- depthwise convolution
convolution : 기본적으로 convolution layer는 fully connected layer에서 spatial(이미지의 가로세로) 영역을 잘게 쪼개고, 그만큼 weight sharing을 시킨 아키텍쳐이다.
- Depth-wise Convolution : 한줄로 말하면 위의 Grouped Convolution에서 group의 개수를 input channel의 개수만큼 만들겠다는 것이다. 즉 1개의 group에 1개의 channel만 들어가 있다.
(참고 출처)
https://newsight.tistory.com/310
Adding the classifier
Data augmentation
You augment the training data through small random transformations
Training the classifier layer
It’s also smart to save a model checkpoint every so often. This is a copy of the model’s weights it has learned up to that point.
Fine-tuning the feature extractoe
fine-tuning the feature extractor.
With fine-tuning, you can adjust the knowledge inside the feature extractor to make it more relevant to your own data. Now the feature extractor itself already understands more about this specific task.
Regularization and dropout
Dropout is a special kind of layer that randomly removes elements from the tensor by setting them to zero.
Tune those hyperparameters
-
the learning rate
-
the dropout probability
-
the weight decay factor for L2 regularization
Choosing appropriate values for these settings — known as hyperparameter tuning — is essential for getting the training process to work optimally.
How good is the model really?
Precision, recall, F1-score
Precision means: how many of the images that were classified as being X really are X?
Recall means: how many of the images of class X did the model find? This is in some ways the opposite of precision.
The classification report also includes the F1-score. This is a combination of precision and recall and is useful if you want to get an average of the two.
What are the worst predictions?
A note on imbalanced classes
Converting to Core ML
* 단어
- augmentation 증가하다
- 합성곱(合成-, convolution, 콘벌루션) : 하나의 함수와 또 다른 함수를 반전 이동한 값을 곱한 다음, 구간에 대해 적분하여 새로운 함수를 구하는 수학 연산자이다.
'IT 지식 기록 > ML for iOS | 인공지능' 카테고리의 다른 글
되돌아보는 챕터 14 (0) | 2020.08.25 |
---|---|
되돌아보는 챕터 8,9 (0) | 2020.08.20 |
되돌아보는 챕터 7 (0) | 2020.08.11 |
실습 코드_Multichannel CNN Model for Text Classification (0) | 2020.08.11 |
Chapter 7 실습 프로젝트 진행 코드 (0) | 2020.08.11 |